Total Hygiene Leads to Increased Productivity and Cost Savings
Water
Just like humans, Poultry consume water. Although the amount of water poultry animals drink varies and greatly depends on the season, temperature, age and weight of the bird. The average laying bird will drink up to 500ml of water a day. Water is a critical component, and it is considered to be the most important nutrient. Like humans, Poultry require good health and wellness. Generally the common perception about water is that “Water is Water”. However, while water that is consumed by humans is generally treated with a process in which certain elements of water are removed to ensure its safety, cleanliness or palatability, water provided to poultry is seldom treated. The importance of water quality is a vital concern in the production and health of poultry.
Disinfection and Sanitation
Diseases and infections have always been a major concern to the poultry industry–especially in the hatchery. Fortunately, microbial contamination can be prevented and controlled using proper management practices and modern health products. ECA Water technology offers a comprehensive eco-friendly and cost effective program that starts with the water treatment and continues through to the barns
Providing a clean and germ free environment is a prerequisite for good animal health and high productivity. Studies indicate that germs cost energy to the farm animal, energy that should be used for animal growth and the production of higher quality animal products. Fewer microorganisms reduce the stress on the animal’s immune system and the risk of diseases.
Farms must take a “Proactive Prevention of Pathogens Plan Approach” to protect its assets as without a plan in place, poultry farms will become toxic with germs and bacteria which will lead to major problems and costs associated through disease containment and elimination, reduced productivity and animal loss.
Benefits of Anolyte
Expect Measurable Cost Savings
ABOUT ECA
ECA stands for electrochemical activation and is a technology that has been employed for more than 100 years, although it was not until the 1970s that the physicochemical properties of ECA were extensively researched at the All-Russian Institute for Medical Engineering.
The transformation of low mineral salt solutions into an activated metastable state, by electrochemical unipolar action, generates two separate and distinct compounds, generically termed anolyte and catholyte which correspond to their derivative electrode chambers:
The use of electrolysis for the production of reductant-oxidant solutions is used in the processes of water purification and decontamination, as well as for transforming water or diluted electrolyte solutions into environmentally friendly anti-microbial, washing, extractive and other functionally useful solutions.
This is largely due to ECA high activity, use of cheap raw materials and ease of production.
The system produces a liquid disinfectant, non-toxic and degradable, capable of destroying bacteria, spores, viruses, moulds, yeasts, fungi, biofilms (biological incrustations) on pipes and removing odours. Its operation requires only water, Sodium or Potassium Chloride (salt) and electricity.
HOW ECA WORKS
ECA works the same way as the human immune system. When the body is under attack from invading bacteria and viruses, the immune system immediately responds by sending neutrophils (white blood cells) to the invasion site.
Neutrophils are one of the body’s main defences against bacteria and, once activated, produce large amounts of a mixed oxidant solution which is effective in eliminating invading microbes and pathogens.
This weak acid, which occurs naturally in the human body, is called hypochlorous acid (HClO) and it is a potent disinfectant. It is non-toxic to humans and is highly effective as an antimicrobial agent with rapid action. Hypochlorous acid is widely recognized as one of the most effective known biocides.
In detail, the system consists of an electrolysis cell containing two electrodes, a cathode and an anode, separated by a diaphragmatic membrane. In the cell is injected an aqueous solution consisting of filtered and softened water and, depending on the application, sodium chloride (NaCl, salt) or potassium chloride (KCl). With the use of electricity with predefined and controlled amperage and voltage values, the cell produces an electrically-activated liquid, Anolyte, with high disinfection power that can be used in a variety of applications.
This unipolar electrochemical activation created by potential gradients of millions of volts per cm2 between the anode and cathode terminals, results in the creation of solutions whose pH, Oxidation Reduction Potentials (ORP) and other physicochemical properties, lie outside of the range which can be achieved by conventional chemical means.
CHARACTERISTIC AND ADVANTAGES OF ELECTRO-ACTIVATED SOLUTIONS
Electro-activated solutions produced by the system are respectively:
Solution | Active Element | pH | ORP/REDOX |
---|---|---|---|
Acid Anolyte | Active Cl 500 / 700 ppm | 2.5 / 5.0 | 1200 / 1000 mV |
Neutral Anolyte | Active Cl 500 / 700 ppm | 6.0 / 8.0 | 950 / 850 mV |
Catolyte | Sodium hydroxide 1000 ppm | 10.0 / 12.0 | -800 / -900 mV |
As presented in several scientific publications, multicellular organisms, including humans and hot blood mammals, to defend themselves against pathogens and foreign microorganisms are able to synthesize, through metabolism, complex mixtures of metastable oxidizing compounds.
These compounds possess a wide spectrum of action and are capable of damaging all major systemic groups of pathogenic microorganisms (bacteria, mycobacteria, viruses, moulds, spores, etc.) without damaging multicellular organisms and human tissues.
The oxidizing liquids and their chemical production mechanisms are similar to those generated in our ECA system and are precisely these common characteristics that give Anolyte a high biocompatibility with human tissues and multicellular organisms besides not being toxic to the environment.
Anolyte has the following advantages:
Anolyte and Catholyte also have the following characteristics: